
Inter thread message based communication

Alexandr Štefek

Military Academy in Brno

alexandr@stefek.cz

Abstract

This paper present implementation of parallel execution. If we use parallel proces in programs we

have to solve synchronization. We show the effective implementation of parallel execution

without using critical sections, semaphores, mutexes or events.

Thread

The thread is system object defined on platform Win32. SDK defines some method for thread

creating and handling. In real implementation must be defined the procedure for all parallel

procedures. If in system Win32 thread create new window handle then all messages are handled

by this thread. For this fact commes the idea of problem solution.

We can simply create window handle on executing thread. When this thread executes loop for

message handling it is possible to send special message to thread window handle. The parameters

of message can be method to execute and parameter for this method. But method has 8 bytes and

the message parameter only 4. So we have allocate memory block, copy method to this block and

send adress of allocated block.

Coding the method

We want to create class that has method for sync parallel and async parallel execution of

methods. Now we show, how to code the 8 byte method to 4 byte adress of method.

function TAxThread.NotifyEventToPointer(Proc: TNotifyEvent): Longint;
var
 Method: TMethod absolute Proc;
 PMethod: ^TMethod;
begin
 New(PMethod);
 PMethod^ := Method;
 Result := Longint(PMethod);

end;

procedure TAxThread.ExecProcedure(var Message: TMessage);
var
 PMethod : ^TMethod;
 Method : TMethod;
 Event: TNotifyEvent absolute Method;
begin
 PMethod := Pointer(Message.WParam);

 Method := PMethod^;
 Event(TObject(Message.LParam));

 Dispose(PMethod);
 if FThreadID = GetCurrentThreadId then
 InterlockedDecrement(FMethodsToExecute);
end;

NotifyEventToPointer is method for copying method to memory block. Result of this method

is adress of memory block. Method ExeProcedure takes WParam of message, convert it back to

method and call decoded method with parametr defined by LParam of message.

Thread loop

We have to define thread message loop. Delphi define basic thread class TThread. This class has

virtual method execute. Defined class TAxThread is inherited from TThread. Method

TAxThread.Execute is overrided;

procedure TAxThread.Execute;
var
 Msg: TMsg;
 Done: Boolean;
begin
 CreateHandleParallel;
 FThreadID := GetCurrentThreadId;

 while not Terminated do
 begin
 if Done then
 begin
 FIdleData := nil;
 WaitMessage;
 end ;
 while ProcessMessage(Msg) do {loop};
 Idle(FIdleData, Done);
 end;
end;

At first the class has to create handle (CreateHandleParallel). Loop while waits for messages

and handles incomming messages (ProcessMessage).

function TAxThread.ProcessMessage(var Msg: TMsg): Boolean;
begin
 Result := False;
 if ekMessage(Msg, 0, 0, 0, PM_REMOVE) then Pe
 begin
 Result := True;
 if Msg.Message <> WM_QUIT then
 begin
 TranslateMessage(Msg);
 DispatchMessage(Msg);
 end
 else
 Terminate;
 end;
end;

Calling DispatchMessage dispatch current message to objects for execution. If incomming

method is CM_EXECUTE (defined in Delphi), then method ExecProcedure is called.

Sync and async execution

All parallel processing is sended to execution by message. If we use for sending the API function

SendMessage then the execution is synchronized (actual thread is suspend, the context is

switched, message is immediately handled and control is returned to sending thread). The API

function PostMessage puts the message to message queue and continue in execution. When the

message is peek from queue, is handled and method is executed.

//Asynchro execute on parallel thread
procedure TAxThread.AsyncExecuteParallel(Proc: TNotifyEvent; ParamSender:

TObject);
begin
 InterlockedIncrement(FMethodsToExecute);
 PostMessageParallel(CM_EXECPROC, NotifyEventToPointer(Proc),

Longint(ParamSender));
end;

//Synchro execute on parallel thread
procedure TAxThread.SyncExecuteParallel(Proc: TNotifyEvent; ParamSender:

TObject);
begin
 InterlockedIncrement(FMethodsToExecute);
 SendMessageParallel(CM_EXECPROC, NotifyEventToPointer(Proc),

Longint(ParamSender));
end;

Introduced method AsyncExecuteParallel is used for async parallel execution (execution on

selected thread) of method Proc with parameter ParamSender. Method SyncExecuteParallel

runs method Proc with parameter ParamSender synchronously (waits for execution). The thread

defines method for execution on main thread (AsyncExecuteMain, SyncExecuteMain).

Using

For example of using define class

type
 TMainForm = class(TForm)
 btnRandomize: TButton;
 imgResult: TImage;
 pbProgress: TProgressBar;
 btnMulti: TButton;
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 procedure btnRandomizeClick(Sender: TObject);
 procedure btnMultiClick(Sender: TObject);
 private
 { Private declarations }
 FExecutingThread: TAxThread;
 public
 { Public declarations }
 procedure RandomizeBMP(Data: TObject);
 procedure DoUpdate(Data: TObject);
 procedure Progress(Data: TObject);
 end;

Private variable FExecutingThread is thread on witch the metods will be executed. There are

three public method in form of TNotifyEvent (can be executed on selected thread).

procedure TMainForm.btnRandomizeClick(Sender: TObject);
var
 PomBMP : TBitmap;
begin
 if FExecutingThread = nil then
 FExecutingThread := TAxThread.Create;

 PomBMP := TBitmap.Create;
 PomBMP.Width := 200;
 PomBMP.Height := 200;
 PomBMP.PixelFormat := pf24bit;

 FExecutingThread.AsyncExecuteParallel(RandomizeBMP, PomBMP);
end;

When user clicked on button then method btnRandomizeClick is called. Method calls

AsyncExecuteParallel. Main thread continue in responsing to user interaction. When the

thread contrext is switched, FExecutingThread begins execute then method RandomizeBMP.

procedure TMainForm.RandomizeBMP(Data: TObject);
var
 CurrentThread : TAxThread;
 PomBMP : TBitmap;
 I : Longint;

 X : Longint;
 Y : Longint;
 Color : Longint;
begin
 if not(Data is TBitmap) then
 Exit;
 PomBMP := Data as TBitmap;

 CurrentThread := TAxThread.GetCurrentThread;
 I := 0;

 try
 PomBMP.Canvas.Lock;
 while not CurrentThread.Terminated do
 begin
 Inc(I);
 if I > MaxPoints then
 Break;

 X := Random(200);
 Y := Random(200);
 Color := Random(256) * 256 * 256 + Random(256) * 256 + Random(256);

 if (I mod (MaxPoints div 100)) = 0 then
 CurrentThread.SyncExecuteMain(Progress, TObject(I));

 //slow for demonstration
 PomBMP.Canvas.Pixels[X, Y] := Color;

 end;
 finally
 PomBMP.Canvas.Unlock;
 CurrentThread.AsyncExecuteMain(DoUpdate, PomBMP);
 end;
end;

Method RandomizeBMP decode parameter as Bitmap and fills it with some random points.

When randomize is finished, the thread notify main thread

(CurrentThread.AsyncExecuteMain).

Conclusion

We present implementation of thread class for async (sync) execution. The designed library has

very effective method for developing of parallel computing.

	Inter thread message based communication
	Abstract
	Thread
	Coding the method
	Thread loop
	Sync and async execution
	Using
	Conclusion

